在GARCH模型框架下,提出过新的双曲GARCH形式(记为HGARCH),不仅与HY-GARCH模型一样可以同时刻画波动的强烈振幅和长记忆衰减两个性质,并且较之HY-GARCH模型,有更简单的条件方差非负约束条件。然而,当时间序列较长时,用单一参数结构不能充分捕捉可能发生的结构变化。为此,提出新的动态混合HGARCH模型(DM-HGARCH),使之可以同时拥有协方差平稳、长记忆和结构变化3个特性。讨论了新模型的弱平稳解存在条件,利用EM算法进行参数估计,并且用蒙特卡罗模拟给出估计在有限样本下的表现。最后将该模型分别用于1995年~2014年中国上证指数和美国标普500指数的日波动率建模。结果表明,在给定样本期间内,动态混合HGARCH模型(DM-HGARCH)对标普500指数有更好的样本内拟合和样本外预测表现。